
CHAPTER 1

Basic definitions

1. On language and interpretation

Definition 1.1. A language or signature L consists of:

(1) a set of constants.
(2) a set of function symbols, each with an arity n ∈ N.
(3) a set of relation symbols, each with an arity n ∈ N.

Once and for all, we fix a countably infinite set of variables.

Definition 1.2. The terms in a signature L are the smallest set of expressions such that:

(1) all constants are terms.
(2) all variables are terms.
(3) if t1, . . . , tn are terms and f is an n-ary function symbol, then also f(t1, . . . , tn) is a

term.

Terms which do not contain any variables are called closed.

Definition 1.3. The atomic formulas is an expression of the form

(1) s = t, where s and t are terms, or
(2) P (t1, . . . , tn), where t1, . . . , tn are terms and P is a n-ary relation symbol.

Definition 1.4. The set of formulas is the smallest set of expressions which:

(1) contains the atomic formulas.
(2) contains ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,¬ϕ whenever ϕ and ψ are formulas.
(3) contains ∃xϕ and ∀xϕ, if ϕ is a formula.

A formula which does not contain any quantifiers, so can be obtained by applying rules (1)
and (2) only, is called quantifier-free. A sentence is a formula which does not contain any free
variables. A set of sentences is called a theory.

We will often write ϕ(x1, . . . , xn) instead of ϕ. The notation ϕ(x1, . . . , xn) is meant to
indicate that ϕ is a formula whose free variables are contained in {x1, . . . , xn}.

Definition 1.5. A structure or model M in a language L consists of:

(1) a non-empty set M (the domain or the universe).
(2) interpretations cM ∈M of all the constants in L,
(3) interpretations fM :Mn →M of all n-ary function symbols in L,
(4) interpretations RM ⊆Mn of all n-ary relation symbols in L.
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If A ⊆M , then we will write LA for the language obtained by adding to L fresh constants
{ca : a ∈ A}. In this case M could also be considered an LA-structure in which ca is interpreted
as a. We will often just write a instead of ca (!!).

If M is a model then the interpretation in M of constants in the language LM can be
extended to all closed terms in the language LM by putting:

f(t1, . . . , tn)M = fM (tM1 , . . . , f
M
n ).

Definition 1.6. If M is a model in in the language L and ϕ is a sentence in the language
LM , then we will write:

• M |= s = t if sM = tM ;
• M |= P (t1, . . . , tn) if (t1, . . . , tn) ∈ PM ;
• M |= ϕ ∧ ψ if M |= ϕ and M |= ψ;
• M |= ϕ ∨ ψ if M |= ϕ or M |= ψ;
• M |= ϕ→ ψ if M |= ϕ implies M |= ψ;
• M |= ¬ϕ if not M |= ϕ;
• M |= ∃xϕ(x) if there is an m ∈M such that M |= ϕ(m);
• M |= ∀xϕ(x) if for all m ∈M we have M |= ϕ(m).

If M |= ϕ we say that ϕ holds in M or is true in M .

Definition 1.7. If M is a model in a language L, then Th(M) is the collection of all
L-sentences true in M . If N is another model in the language L, then we write M ≡ N and
call M and N elementarily equivalent, whenever Th(M) = Th(N).

Definition 1.8. Let Γ and ∆ be theories. If M |= ϕ for all ϕ ∈ Γ, then M is called a
model of Γ. We will write Γ |= ∆ if every model of Γ is a model of ∆ as well. We write Γ |= ϕ
for Γ |= {ϕ} and ϕ |= ψ for {ϕ} |= {ψ}.

Definition 1.9. If L ⊆ L′ and M is an L′-structure, then we can obtain an L-structure
N by taking the universe of M and forgetting the interpretations of the symbols which do not
occur in L. In that case, M is an expansion of N and N is the L-reduct of M .

Lemma 1.10. If L ⊆ L′ and M is an L′-structure and N is its L-reduct, then we have
N |= ϕ(m1, . . . ,mn) iff M |= ϕ(m1, . . . ,mn) for all formulas ϕ(x1, . . . , xn) in the language L
and all elements m1, . . . ,mn from M .

2. Morphisms

Any structure in mathematics comes with a notion of homomorphism: a mapping preserv-
ing that structure.

Definition 1.11. Let M and N be two L-structures. A homomorphism h:M → N is a
function h:M → N such that:

(1) h(cM ) = cN for all constants c in L;
(2) h(fM (m1, . . . ,mn)) = fN (h(m1), . . . , h(mn)) for all function symbols f in L and

elements m1, . . . ,mn ∈M ;
(3) (m1, . . . ,mn) ∈ RM implies (h(m1), . . . , h(mn)) ∈ RN .

A homomorphism which is bijective and whose inverse f−1 is also a homomorphism is called
an isomorphism. If there exists an isomorphism between structures M and N , then M and N
are called isomorphic. An isomorphism from a structure to itself is called an automorphism.
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Actually, in model theory the general notion of homomorphism turns out to of limited
usefulness. More important are the embeddings.

Definition 1.12. A homomorphism h:M → N is an embedding if

(1) h is injective;
(2) (h(m1), . . . , h(mn)) ∈ RN implies (m1, . . . ,mn) ∈ RM .

Lemma 1.13. The following are equivalent for a homomorphism h:M → N :

(i) h is an embedding.
(ii) M |= ϕ(m1, . . . ,mn) ⇔ N |= ϕ(h(m1), . . . , h(mn)) for all m1, . . . ,mn ∈ M and

atomic formulas ϕ(x1, . . . , xn).
(iii) M |= ϕ(m1, . . . ,mn) ⇔ N |= ϕ(h(m1), . . . , h(mn)) for all m1, . . . ,mn ∈ M and

quantifier-free formulas ϕ(x1, . . . , xn).

Definition 1.14. If M and N are two models and the inclusion M ⊆ N is an embedding,
then M is a substructure of N and N is an extension of M .

But the most important notion of morphism in model theory is that of an elementary
embedding.

Definition 1.15. An embedding is called elementary, if

M |= ϕ(m1, . . . ,mn)⇔ N |= ϕ(h(m1), . . . , h(mn))

for all m1, . . . ,mn ∈M and all formulas ϕ(x1, . . . , xn).

Remark 1.16. In the definition of an elementary embedding the equivalence

M |= ϕ(m1, . . . ,mn)⇔ N |= ϕ(h(m1), . . . , h(mn))

holds as soon as the implication from left to right or from right to left holds. (Why? Hint:
Negation!) A similar remark applies to point (iii) of Lemma 1.13.

Lemma 1.17. Any isomorphism h:M → N is also an elementary embedding. If h:M → N
is an elementary embedding, then M ≡ N .

3. Exercises

Exercise 1. A theory T is consistent if it has a model and complete if it is consistent and
for any formula ϕ we have

T |= ϕ or T |= ¬ϕ.
Show that the following are equivalent for a consistent theory T :

(1) T is complete.
(2) All models of T are elementarily equivalent.
(3) There is a structure M such that T and Th(M) have the same models.

Exercise 2. An element a in an L-structure M is definable if there is an L-formula ϕ(x)
such that for any m ∈M

M |= ϕ(m)⇔ a = m.

(a) What are the definable elements in (N,+)? And in (Z,+)? Justify your answers.
(b) Is the embedding (N,+) ⊆ (Z,+) elementary? And the embedding (N, ·) ⊆ (Z, ·)?

And the embedding (Z, ·) ⊆ (Q, ·)? And the embedding (Q, ·) ⊆ (R, ·)? And the
embedding (R, ·) ⊆ (C, ·)?
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Exercise 3. (For the algebraists.) Let Lr = {0, 1,+,−, ·} be the language of (unital)
rings with binary operations + and ·, a unary operation − and constants 0, 1. Let CR be the
theory of commutative rings, saying that both + and · are associative and commutative with
units 0 and 1, respectively, plus an axiom saying that −x is an additive inverse for x and the
distributive law x · (y + z) = x · y + x · z. The theory ID of integral domains is the theory CR
together with the axioms 0 6= 1 and ∀x∀y (x · y = 0 → x = 0 ∨ y = 0), while the theory F of
fields is the theory CR together with 0 6= 1 and ∀x (x 6= 0→ ∃y x · y = 1 ).

(a) A universal sentence is one of the form ∀x1, . . . , xnϕ(x1, . . . , xn) where ϕ(x1, . . . , xn)
is quantifier-free. A theory T can be axiomatised using universal sentences if there is
a collection of universal sentences S such that S and T have the same models.

Show that CR and ID can be axiomatised using universal sentences, while this is
impossible for F . Hint: Check that universal sentences are preserved by substructures.

(b) Write T∀ = {ϕ : T |= ϕ and ϕ is universal}. Show that F∀ and ID have the same
models. Hint: Use that any integral domain can be embedded into a field (its field of
fractions) by mimicking the construction of Q out of Z.

Exercise 4. Let L be signature and M and N be two L-structures. Show that if M is
finite and M and N are elementarily equivalent, then M and N are isomorphic. Hint: You
may find it helpful to first think about the special case where the language L is finite.



CHAPTER 2

Compactness theorem

The most important result in model theory is:

Theorem 2.1. Let T be a theory in language L. If every finite subset of T has a model,
then T has a model.

I suspect many of you have seen a proof of this already. In fact, it is often obtained as
a direct corollary of the completeness theorem for first-order logic. But one can give a purely
model-theoretic proof (without any proof calculus in sight) and such a proof will be sketched
below.

1. A proof

For convenience let us temporarily call a theory T finitely consistent if any finite subset of
T has a model. The goal is to show that finitely consistent theories are consistent (that is, have
a model). The first step is to reduce the problem to showing that maximal finitely consistent
theories have models.

Definition 2.2. A theory T in a language L is maximal finitely consistent if there is no
finitely consistent L-theory T ′ with T ⊂ T ′ (in other words, adding any new sentence to T
destroys its finite consistency).

The following is a direct consequence of Zorn’s Lemma (see below).

Lemma 2.3. Any finitely consistent L-theory T can be extended to a maximal finitely con-
sistent L-theory T ′.

Proof. Consider the collection P of all finitely consistent L-theories which extend T and
order P by inclusion. Since every linearly subset X of P has an upper bound (simply take
the union of all theories in X), Zorn’s Lemma tells us that P has a maximal element. Such a
maximal element is a maximal finitely consistent theory T ′ extending T . �

Lemma 2.4. Let T be maximal finitely consistent L-theory.

(1) For any sentence ϕ the theory T contains either ϕ or ¬ϕ.
(2) If T0 is a finite subset of T and T0 |= ϕ, then ϕ ∈ T .

Proof. (i): Suppose T is a maximal finitely consistent L-theory and ϕ 6∈ T . Since T was
maximal, T ∪ {ϕ} cannot be finitely consistent, so there is a finite subset T2 ⊆ T such that
T2 ∪ {ϕ} has no models.
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6 2. COMPACTNESS THEOREM

We want to show that ¬ϕ ∈ T . For this it suffices to prove that T ∪ {¬ϕ} is finitely
consistent; indeed, this can only be compatible with the maximality of T if T ∪ {¬ϕ} = T , or,
in other words, if ¬ϕ ∈ T .

To see that T ∪{¬ϕ} is finitely consistent, let T0 ⊆ T ∪{¬ϕ} be finite. Then T0 is a subset
of a set of form T1 ∪ {¬ϕ} with T1 a finite subset of T .

Consider T1 ∪ T2. This is a finite subset of T and since T is finitely consistent, the set
T1 ∪ T2 has a model M . Because M is a model of T2, it cannot be a model of ϕ. So M |= T1
and M |= ϕ. Hence M is a model of T0 and since T0 was an arbitrary finite subset of T ∪{¬ϕ},
we have shown that T ∪ {¬ϕ} is finitely consistent, as desired.

(ii): Assume T0 is a finite subset of a maximal finitely consistent L-theory T and T0 |= ϕ.
It follows that ϕ ∈ T . For if ϕ 6∈ T , then ¬ϕ ∈ T by (i). But then T0∪{¬ϕ} is a finite subset of
T , so has a model M . But then M is a model of T0 in which ϕ does not hold, contradiction. �

Proposition 2.5. Suppose T is a finitely consistent theory in a language L and C is a set
of constants in L. If for any formula ψ(x) in the language L there is a constant c ∈ C such
that

∃xψ(x)→ ψ(c) ∈ T,
then T has a model whose universe consists entirely of interpretations of constants in C.

Proof. In view of Lemma 2.3 it suffices to prove the statement for maximal finitely con-
sistent T . In this case we construct a model M by taking the closed terms in L and identifying
closed terms s and t whenever the expression s = t belongs to T : it follows from part (ii) of
the previous lemma that this is an equivalence relation.

We have to show how to interpret constants as well as function and relation symbols in M .
If c is any constant in L, then we put cM = [c], whilst if any f is any n-ary function symbol
and t1, . . . , tn are closed L-terms, then we set

fM ([t1], . . . , [tn]): = [f(t1, . . . , tn)].

Another appeal to part (ii) of the previous lemma is needed to show that this is well-defined.

Finally, if R is an n-ary relation symbol, then we will say that ([t1], . . . , [tn]) ∈ RM in
case R(t1, . . . , tn) ∈ T . Part (ii) of the previous lemma should again to be used to justify this
definition.

Now one can easily show by induction on the structure of the term t that tM = [t] and the
structure of the formula ϕ that M |= ϕ if and only if ϕ ∈ T . In short, M is a model of T .

It remains to verify that any element in M is an interpretation of a constant c ∈ C. We
know that any element in M is of the form [t] for some closed term t. But because ∃x (x = t)
is a tautology and there exists an element c ∈ C for which

T |= ∃x (x = t)→ c = t

by hypothesis, there is an element c ∈ C with c = t ∈ T . So M |= c = t and cM = tM = [t]. �

Lemma 2.6. Suppose T is a finitely consistent L-theory. Then L can be extended to a
language L′ and T to a finitely consistent L′-theory T ′ such that for any L′-formula ϕ(x) there
is a constant c in L′ such that

T ′ |= ∃xϕ(x)→ ϕ(c).
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Proof. We define by induction a sequence of languages Ln and Ln-theories Tn. We start
by putting L0 = L and T0 = T .

If Ln and Tn have been defined, we obtain Ln+1 by adding to Ln a fresh constant cϕ for
any Ln-formula ϕ(x). Moreover, Tn+1 is obtained by adding to Tn for any Ln-formula ϕ(x)
the sentence

∃xϕ(x)→ ϕ(cϕ).

One easily proves by induction on n that each Tn is finitely consistent.

Finally, we put L′ =
⋃

n∈N Ln and T ′ =
⋃

n∈N Tn. Then T ′ is finitely consistent (see
exercise 5 below). Moreover, any L′-formula ϕ(x) is already an Ln-formula for some n (see
again exercise 5 below). So

∃xϕ(x)→ ϕ(cϕ) ∈ Tn+1 ⊆ T,
as desired. �

Theorem 2.7. (Compactness Theorem) Let T be a theory in language L. If every finite
subset of T has a model, then T has a model.

Proof. Let T be a finitely consistent L-theory. Combining the previous lemma with the
previous proposition, one sees that L can be extended to a language L′ and T to an L′-theory
T ′ such that T ′ has a model M . So if N is the reduct of M to L, then N is a model of T by
Lemma 1.10. �

2. Appendix: statement of Zorn’s Lemma

Definition 2.8. A partial order is a set P together with a binary relation ≤ which is

(i) reflexive, so x ≤ x for any x ∈ P .
(ii) anti-symmetric, so x ≤ y and y ≤ x imply x = y.
(iii) transitive, so x ≤ y and y ≤ z imply x ≤ z.

A subset X ⊆ P is called a chain if for any two elements x, y ∈ X we have either x ≤ y or
y ≤ x. An upper bound for a set X ⊆ P is an element y ∈ P such that x ≤ y for all x ∈ X. An
element x ∈ P is maximal if x ≤ y implies x = y.

Lemma 2.9. (Zorn’s Lemma) Let (P,≤) be a partial order and assume that any chain in
P has an upper bound. Then P contains at least one maximal element.

Proof. A proof can be found in most textbooks on set theory (for example, on page 114
of Moschovakis, Notes on Set Theory, second edition, Springer-Verlag, 2006). �

3. Exercises

Exercise 5. (a) Let A0 ⊆ A1 ⊆ A2 ⊆ . . . be an increasing sequence of sets, and
write A: =

⋃
n∈NAn. Show that any finite subset of A is already a finite subset of

some An.
(b) Suppose that L0 ⊆ L1 ⊆ L2 ⊆ . . . is an increasing sequence of languages and L =⋃

n∈N Ln. Show that any L-formula is also an Ln-formula for some n.
(c) Suppose that T0 ⊆ T1 ⊆ T2 ⊆ . . . is an increasing sequence of finitely consistent

theories. Prove that
⋃

n∈N Tn is finitely consistent as well.
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Exercise 6. A class of models K in some fixed signature is called an elementary class if
there is a first-order theory such that K consists of precisely those L-structures that are models
of T .

Show that if K is a class of L-structures and both K and its complement (in the class of all
L-structures) are elementary, then there is a sentence ϕ such that M belongs to K if and only
if M |= ϕ.

Exercise 7. We work over the empty language L (no constants, function or relations
symbols). Show that the class of infinite L-structures is elementary, but the class of finite
L-structures is not. Deduce that there is no sentence ϕ that is true in an L-structure if and
only if the L-structure is infinite.


