CHAPTER 1

Basic definitions

1. On language and interpretation

DEFINITION 1.1. A language or signature L consists of:

(1) a set of constants.
(2) a set of function symbols, each with an arity n € N.
(3) a set of relation symbols, each with an arity n € N.

Once and for all, we fix a countably infinite set of variables.

DEFINITION 1.2. The terms in a signature L are the smallest set of expressions such that:

(1) all constants are terms.

(2) all variables are terms.

(3) if t1,...,t, are terms and f is an n-ary function symbol, then also f(t1,...,t,) is a
term.

Terms which do not contain any variables are called closed.

DEFINITION 1.3. The atomic formulas is an expression of the form

(1) s =t, where s and ¢ are terms, or
(2) P(t1,...,tn), where t1,...,t, are terms and P is a n-ary relation symbol.

DEFINITION 1.4. The set of formulas is the smallest set of expressions which:

(1) contains the atomic formulas.
(2) contains p A, V 1, p — 1, = whenever ¢ and 1) are formulas.
(3) contains 3z ¢ and Vz ¢, if ¢ is a formula.

A formula which does not contain any quantifiers, so can be obtained by applying rules (1)
and (2) only, is called quantifier-free. A sentence is a formula which does not contain any free
variables. A set of sentences is called a theory.

We will often write ¢(z1,...,z,) instead of ¢. The notation ¢(x1,...,2,) is meant to
indicate that ¢ is a formula whose free variables are contained in {x1,...,z,}.

DEFINITION 1.5. A structure or model M in a language L consists of:

(1) a non-empty set M (the domain or the universe).

(2) interpretations ¢™ € M of all the constants in L,

(3) interpretations fM: M™ — M of all n-ary function symbols in L,
(4) interpretations RM C M™ of all n-ary relation symbols in L.
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2 1. BASIC DEFINITIONS

If AC M, then we will write L 4 for the language obtained by adding to L fresh constants
{cq: a € A}. In this case M could also be considered an L 4-structure in which ¢, is interpreted
as a. We will often just write a instead of ¢, (!!).

If M is a model then the interpretation in M of constants in the language Lj; can be
extended to all closed terms in the language Lj; by putting:

f(tlvvtn)M:f]VI(t{V[77f7]LV[)

DEFINITION 1.6. If M is a model in in the language L and ¢ is a sentence in the language
Ly, then we will write:

M = s =tif sM =M,

M':P(tl,,tn) lf(tl,,tn)EPM,
MEeAY it MEpand M =1

M @V if M =g or My

M=o = if M | ¢ implies M = 1;

M = -y if not M = ¢;

M = 3z p(x) if there is an m € M such that M = ¢(m);
M = Vzp(z) if for all m € M we have M = ¢(m).

If M = ¢ we say that ¢ holds in M or is true in M.

DEFINITION 1.7. If M is a model in a language L, then Th(M) is the collection of all
L-sentences true in M. If N is another model in the language L, then we write M = N and
call M and N elementarily equivalent, whenever Th(M) = Th(N).

DEFINITION 1.8. Let I and A be theories. If M |= ¢ for all ¢ € T', then M is called a
model of T'. We will write I' = A if every model of T" is a model of A as well. We write I' = ¢

for T = {o} and = v for {9} = {0},

DEeFINITION 1.9. If L C I/ and M is an L'-structure, then we can obtain an L-structure
N by taking the universe of M and forgetting the interpretations of the symbols which do not
occur in L. In that case, M is an expansion of N and N is the L-reduct of M.

LEMMA 1.10. If L C L' and M is an L'-structure and N is its L-reduct, then we have
N E o(my,...,my) iff M E o(m,...,my) for all formulas p(zx1,...,x,) in the language L
and all elements mq,...,my, from M.

2. Morphisms

Any structure in mathematics comes with a notion of homomorphism: a mapping preserv-
ing that structure.

DEFINITION 1.11. Let M and N be two L-structures. A homomorphism h: M — N is a
function h: M — N such that:

(1) h(cM) = cN for all constants ¢ in L;

(2) R(fM(my,...,my)) = fN(h(my),...,h(m,)) for all function symbols f in L and
elements mq,...,m, € M;

(3) (ma,...,m,) € RM implies (h(m1),...,h(m,)) € RN.

A homomorphism which is bijective and whose inverse f~! is also a homomorphism is called
an isomorphism. If there exists an isomorphism between structures M and N, then M and N
are called isomorphic. An isomorphism from a structure to itself is called an automorphism.
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Actually, in model theory the general notion of homomorphism turns out to of limited
usefulness. More important are the embeddings.

DEFINITION 1.12. A homomorphism h: M — N is an embedding if

(1) h is injective;
(2) (h(m1),...,h(my)) € RY implies (m1,...,m,) € RM.

LEMMA 1.13. The following are equivalent for a homomorphism h: M — N :

(i) h is an embedding.
(i) M E o(my,....,myp) & N E o(h(mi),...,h(my)) for all my,...,m, € M and

atomic formulas o(x1,...,2n).
(iii) M = o(my,...,myn) & N E p(h(mq),...,h(my)) for all my,...,m, € M and
quantifier-free formulas (1, ..., x,).

DEFINITION 1.14. If M and N are two models and the inclusion M C N is an embedding,
then M is a substructure of N and N is an extension of M.

But the most important notion of morphism in model theory is that of an elementary
embedding.

DEFINITION 1.15. An embedding is called elementary, if
M E p(my,...,my) < N Eoh(my),...,h(my))

for all my,...,m, € M and all formulas ¢(z1,...,z,).

REMARK 1.16. In the definition of an elementary embedding the equivalence

M E o(my,...,my) & N E o(h(my), ..., h(m,))

holds as soon as the implication from left to right or from right to left holds. (Why? Hint:
Negation!) A similar remark applies to point (iii) of Lemma 1.13.

LEMMA 1.17. Any isomorphism h: M — N is also an elementary embedding. If h: M — N
is an elementary embedding, then M = N.

3. Exercises

EXERCISE 1. A theory T is consistent if it has a model and complete if it is consistent and
for any formula ¢ we have
TEp o TE-o
Show that the following are equivalent for a consistent theory T":

(1) T is complete.
(2) All models of T" are elementarily equivalent.
(3) There is a structure M such that T and Th(M) have the same models.

EXERCISE 2. An element a in an L-structure M is definable if there is an L-formula ¢(z)
such that for any m € M
M = ¢o(m) < a=m.

(a) What are the definable elements in (N, +)? And in (Z,+)? Justify your answers.

(b) Is the embedding (N,+) C (Z,+) elementary? And the embedding (N,-) C (Z,-)?
And the embedding (Z,-) C (Q,-)? And the embedding (Q,:) C (R,:)? And the
embedding (R,-) C (C,)?
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EXERCISE 3. (For the algebraists.) Let L. = {0,1,+,—,-} be the language of (unital)
rings with binary operations + and -, a unary operation — and constants 0,1. Let CR be the
theory of commutative rings, saying that both + and - are associative and commutative with
units 0 and 1, respectively, plus an axiom saying that —z is an additive inverse for x and the
distributive law = - (y + 2) = -y + x - z. The theory ID of integral domains is the theory CR
together with the axioms 0 # 1 and VaVy (z -y =0 — = = 0V y = 0), while the theory F of
fields is the theory CR together with 0 # 1 and V(2 # 0 — Jyx -y =1).

(a) A universal sentence is one of the form Vay,...,xo@(z1,...,2,) where p(z1,...,2p)
is quantifier-free. A theory T can be azxiomatised using universal sentences if there is
a collection of universal sentences S such that S and T have the same models.
Show that C'R and I D can be axiomatised using universal sentences, while this is
impossible for F'. Hint: Check that universal sentences are preserved by substructures.
(b) Write Ty = {¢: T = ¢ and ¢ is universal}. Show that Fy and ID have the same
models. Hint: Use that any integral domain can be embedded into a field (its field of
fractions) by mimicking the construction of Q out of Z.

EXERCISE 4. Let L be signature and M and N be two L-structures. Show that if M is
finite and M and N are elementarily equivalent, then M and N are isomorphic. Hint: You
may find it helpful to first think about the special case where the language L is finite.



CHAPTER 2

Compactness theorem

The most important result in model theory is:

THEOREM 2.1. Let T be a theory in language L. If every finite subset of T' has a model,
then T has a model.

I suspect many of you have seen a proof of this already. In fact, it is often obtained as
a direct corollary of the completeness theorem for first-order logic. But one can give a purely
model-theoretic proof (without any proof calculus in sight) and such a proof will be sketched
below.

1. A proof

For convenience let us temporarily call a theory T finitely consistent if any finite subset of
T has a model. The goal is to show that finitely consistent theories are consistent (that is, have
a model). The first step is to reduce the problem to showing that maximal finitely consistent
theories have models.

DEFINITION 2.2. A theory T in a language L is maximal finitely consistent if there is no
finitely consistent L-theory T’ with T C T’ (in other words, adding any new sentence to T'
destroys its finite consistency).

The following is a direct consequence of Zorn’s Lemma (see below).

LEMMA 2.3. Any finitely consistent L-theory T can be extended to a maximal finitely con-
sistent L-theory T".

ProOF. Consider the collection P of all finitely consistent L-theories which extend T" and
order P by inclusion. Since every linearly subset X of P has an upper bound (simply take
the union of all theories in X), Zorn’s Lemma tells us that P has a maximal element. Such a
maximal element is a maximal finitely consistent theory 7" extending 7. |

LEMMA 2.4. Let T be mazimal finitely consistent L-theory.

(1) For any sentence ¢ the theory T contains either ¢ or —p.
(2) IfTp is a finite subset of T and Ty |= ¢, then ¢ € T

PROOF. (i): Suppose T is a maximal finitely consistent L-theory and ¢ ¢ T. Since T was
maximal, T'U {¢} cannot be finitely consistent, so there is a finite subset 75 C T such that
T5 U {¢} has no models.
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We want to show that - € T. For this it suffices to prove that T'U {—¢p} is finitely
consistent; indeed, this can only be compatible with the maximality of T if T U {-¢} =T, or,
in other words, if ~¢ € T.

To see that T'U{—y} is finitely consistent, let Ty C T'U{—¢} be finite. Then Tj is a subset
of a set of form T7 U {—¢} with 77 a finite subset of 7.

Consider Ty U T5. This is a finite subset of T and since T is finitely consistent, the set
Ty UT5, has a model M. Because M is a model of Ty, it cannot be a model of . So M = T}
and M | . Hence M is a model of Tj and since T was an arbitrary finite subset of T'U{—¢},
we have shown that 7'U {—¢} is finitely consistent, as desired.

(ii): Assume Tj is a finite subset of a maximal finitely consistent L-theory T" and Tj |= .
It follows that ¢ € T'. For if ¢ ¢ T', then -~ € T by (i). But then Ty U{—¢} is a finite subset of
T, so has a model M. But then M is a model of Ty in which ¢ does not hold, contradiction. [

PROPOSITION 2.5. Suppose T is a finitely consistent theory in a language L and C is a set
of constants in L. If for any formula ¥ (x) in the language L there is a constant ¢ € C such
that

Jx(z) = P(c) € T,

then T has a model whose universe consists entirely of interpretations of constants in C.

PrOOF. In view of Lemma 2.3 it suffices to prove the statement for maximal finitely con-
sistent 7. In this case we construct a model M by taking the closed terms in L and identifying
closed terms s and ¢ whenever the expression s = t belongs to T": it follows from part (ii) of
the previous lemma that this is an equivalence relation.

We have to show how to interpret constants as well as function and relation symbols in M.
If ¢ is any constant in L, then we put ¢™ = [c], whilst if any f is any n-ary function symbol
and tq1,...,t, are closed L-terms, then we set

fM([tl]a cey [tn]): = [f(th cee 7tn)]-
Another appeal to part (ii) of the previous lemma is needed to show that this is well-defined.

Finally, if R is an n-ary relation symbol, then we will say that ([t1],...,[t,]) € RM in
case R(t1,...,tn) € T. Part (ii) of the previous lemma should again to be used to justify this
definition.

Now one can easily show by induction on the structure of the term ¢ that ™ = [t] and the
structure of the formula ¢ that M |= ¢ if and only if ¢ € T'. In short, M is a model of T.

It remains to verify that any element in M is an interpretation of a constant ¢ € C. We
know that any element in M is of the form [¢] for some closed term ¢. But because Jz (z = t)
is a tautology and there exists an element ¢ € C' for which

TEIx(x=t)—>c=t
by hypothesis, there is an element ¢ € C withc=t € T. So M Ec=tand M =tM =[t]. O
LEMMA 2.6. Suppose T is a finitely consistent L-theory. Then L can be extended to a

language L' and T to a finitely consistent L'-theory T' such that for any L'-formula o(x) there
is a constant ¢ in L' such that

T’ | 3w p(z) — ¢(c).
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PROOF. We define by induction a sequence of languages L,, and L,-theories T;,. We start
by putting Lo =L and Ty =T

If L, and T;, have been defined, we obtain L, ; by adding to L,, a fresh constant c, for
any L,-formula ¢(x). Moreover, T, is obtained by adding to T;, for any L,-formula ¢(x)
the sentence

Fz () = p(cy).
One easily proves by induction on n that each T,, is finitely consistent.

Finally, we put L' = {J,cyLn and 7" = U, ey Tn- Then T is finitely consistent (see
exercise 5 below). Moreover, any L'-formula ¢(x) is already an L,-formula for some n (see
again exercise 5 below). So

Jzp(x) = plcp) € Ty C T,
as desired. (]

THEOREM 2.7. (Compactness Theorem) Let T' be a theory in language L. If every finite
subset of T has a model, then T has a model.

PROOF. Let T be a finitely consistent L-theory. Combining the previous lemma with the
previous proposition, one sees that L can be extended to a language L’ and T to an L’-theory
T’ such that T has a model M. So if N is the reduct of M to L, then N is a model of T by
Lemma 1.10. O

2. Appendix: statement of Zorn’s Lemma

DEFINITION 2.8. A partial order is a set P together with a binary relation < which is

(i) reflexive, so z < x for any x € P.
(ii) anti-symmetric, so z <y and y <  imply = = y.
(iil) transitive, so z <y and y < z imply z < z.

A subset X C P is called a chain if for any two elements x,y € X we have either x < y or
y < x. An upper bound for a set X C P is an element y € P such that x <y for all z € X. An
element x € P is maximal if x <y implies z = y.

LEMMA 2.9. (Zorn’s Lemma) Let (P, <) be a partial order and assume that any chain in
P has an upper bound. Then P contains at least one maximal element.

PROOF. A proof can be found in most textbooks on set theory (for example, on page 114
of Moschovakis, Notes on Set Theory, second edition, Springer-Verlag, 2006). (]

3. Exercises

EXERCISE 5. (a) Let A9 € A3 C Ay C ... be an increasing sequence of sets, and
write A:= |J, cyy An. Show that any finite subset of A is already a finite subset of
some A,,.

(b) Suppose that Ly € L; C Ly C ... is an increasing sequence of languages and L =
UnEN L,. Show that any L-formula is also an L,-formula for some n.
(c) Suppose that Tp € 73 C T5 C ... is an increasing sequence of finitely consistent

theories. Prove that (J,, .y T’ is finitely consistent as well.
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EXERCISE 6. A class of models K in some fixed signature is called an elementary class if
there is a first-order theory such that K consists of precisely those L-structures that are models
of T

Show that if K is a class of L-structures and both K and its complement (in the class of all
L-structures) are elementary, then there is a sentence ¢ such that M belongs to K if and only

if M = o.

EXERCISE 7. We work over the empty language L (no constants, function or relations
symbols). Show that the class of infinite L-structures is elementary, but the class of finite
L-structures is not. Deduce that there is no sentence ¢ that is true in an L-structure if and
only if the L-structure is infinite.



